سامانه پیشنهاد فیلم شاخه ای از سامانه های توصیه گر محسوب می شود.سامانه ی توصیه گر سامانه ای است که با بررسی رفتار کاربر خود، مناسب ترین داده را به وی پیشنهاد می نماید.
هدف از این پروژه توسعه یک سامانه پیشنهاد فیلم می‌باشد که با استفاده از سابقه فیلم‌های دیده شده توسط یک کاربر و امتیازات او به فیلم‌ها، بتواند فیلمی را مطابق سلیقه کاربر به او پیشنهاد بدهد.
پایه ای ترین ایده برای ساخت یک سیستم پیشنهاد فیلم این است که اگر دو کاربر به یک فیلم علاقه مند بودند در آینده هم فیلم های مورد علاقه مشترکی خواهند داشت.
به عنوان مثال اگر کاربر یک و دو از یک فیلم خوششان بیاید و کاربر یک به یک فیلم علاقه مند باشد . که کاربر دو هنوز آن را ندیده باشد سیستم ما آن فیلم را به کاربر دو پیشنهاد خواهد داد.

۱. مقدمه

یکی از مشکلاتی که خیلی از افراد ممکن است داشته باشند پیدا کردن فیلم مورد علاقه آن ها ست.
بیشتر افراد به دلیل کمبود وقت ،عدم وجود حوصله کافی برای جست و جو و غیره به یک سیستم که با توجه به علاقه مندی ها قبلی آ ن ها بتواند فیلم مورد علاقه ان ها را پیشنهاد دهد.
الگوریتم های زیادی برای ایجاد یک سیستم پیشنهادی وجود دارد که هرکدام مزیا و معایبی خاص خود را دارند مانند:
۱-Collaborative filtering
۲-cluster analysis

۲. کار های مرتبط

۱-Collaborative filtering
یکی از الگوریتم های رایج است که افراد مبتدی در حوزه علم داده از ان استفاده می کنند.[5]
دو روش اصلی برای این الگوریتم وجود دارد:
۱-براساس کاربر
۲-بر اساس ایتم(فیلم ) ها
۳-یادگیری عمیق (deep learning)
در هردو روش دو قدم اصلی وجود دارد
۱-چه تعداد کاربر یا فیلم در پایگاه داده شباهت به کاربر یا فیلم داده شده دارند.
۲-دسترسی به فیلم بقیه کاربر ها و پیش بینی نمره ای کاربر به فیلم خواهد داد و مقایسه با میانگین نمرات همه کاربران
ماتریس تجزیه برای پیشنهاد ها


در ماتریس u به معنای وکتوری از علاقه مندی ها ی کاربر و v به معنای وکتور پارامتر های j امین فیلم
به عنوان مثال

(۱.۴،۹) برای تد و (۱،۴،۸) برای فیلم A حال می توانیم نمره برای فیلم a- ted را می توانیم با ضرب(dot) بنابراین 2.68 نتیجه می شود.

2-خوشه (clustering)
روش قبلی ساده ، برای سیستم های کوچک بود ولی روشی که الان به شرح ان میپردازیم برای سیستم های بزرگ و زمانی که داده به اندازه کافی داریم کاربرد دارد.
در این روش باید خوشه هایی دارای فیلم های مشخصی هستند را دسته بندی کنیم و کاربران را براساس خوشه ای که هستند پیشنهاد هایی را دریافت میکنند[4]

۳. ازمایش ها

در اینجا می خواهیم با استفاده از دیتا ست MovieLens،اسپارک و فریمورک فلسک(flask) یک وب سرویس بنویسیم.
اسپارک
اسپارک محاسباتی خوشه ای سبک و سریع برای محاسبات سریع طراحی شده است.
اسپارک در لایه بالایی Hadoop MapReduce می باشد و مدل MapReduce را برای موثر بودن انواع بیشتری از محاسباتی که شامل کوئری های تعاملی (Interactive Queries) و جریان پردازش (Stream Processing) می باشد ، گسترش می دهد.[6]
هدوپ (hadoop) یک پروژه مبتنی بر برنامه نویسی متن باز است که توسط سازمان نرم افزاری آپاچی ایجاد شده است. ایده اولیه هدوپ اولین بار در شرکت گوگل رقم خورد اما خیلی ها باور به پیاده سازی این سیستم نداشتن و در چند سال اول این ایده تنها بصورت تئوری مطرح بود. هدوپ امکان ذخیره سازی اطلاعات را در چندین سرور ( پی سی) با هزینه ای پایین فراهم می آورد.کلودرا شرکتی است که بصورت فعال در این زمینه فعال می باشد و بسته نرم افزاری بی نظیر هدوپ را ایجاد کرده و آن را انتشار داده و پشتیبانی می کند.تکنولوژی هدوپ از دو بخش کلی اچ دی اف اس یا سیستم فایل انتشاری هدوپ (Hadoop Distribition File System) و همچنین تکنیک با کیفیت پردازی اطلاعات به نام مپ ریدیوس (MapReduce) استفاده می کند.[7]
هسته اسپارک
هسته Spark شامل قابلیت های اساسی Spark از قبیل اجزایی برای زمان بندی وظیفه،مدیریت حافظه، ترمیم خطا، تعامل با سیستم های ذخیره سازی و دیگر اجزا است.همچنین هسته Spark مکان API ای است که مجموعه داده ای توزیع شده ارتجاعی(resilient distributed datasets-RDD) که انتزاع برنامه نویسی اصلی Sparkاست را تعریف می کند. RDD ها مجموعه اقلام توزیع شده در چندین گره پردازشی که می توانند بطور موازی استفاده شوند، را نشان می دهد.
درشتپردازش اطلاعات
ابتدا ادرس را برای دانلود تعریف می کنیم سپس فایل ها را از حالت فشرده خارج میکنیم.

توضیح تصویر

بازگزاری و پارس کردن دیتا ست ها
حال فایل های اماده شده و اماده خوانده شدن هستند .
باید RDD تشکلیل شده از لاین ها پارس شده درست کنیم.
فرمت خطوط فایل ها:
فایل رتبه بندی (Rating.csv)
userId,movieId,rating,timestamp
فایل فیلم ها( Movie.csv )
movieId,title,genres
فایل تگ ها(tags.csv)
userId,movieId,tag,timestamp
فایل لینک ها(links.csv)
movieId,imdbId,tmdbId
فرمت این فایل ها ساده است، بنابراین ما می توانیم از split () پایتون استفاده کنیم تا خطوط خود را پس از بارگذاری در RDD ها تجزیه کنیم. تجزیه فیلم ها و فایل های رتبه بندی RDD را انجام می دهد:
توضیح تصویر

برای هر خط در مجموعه داده های رتبه بندی، ما یک دسته از (UserID، MovieID، Rating) ایجاد می کنیم. ما time stamp را از حذف میکنیم م زیرا نیازی به ان نداریم
برای هر خط در مجموعه داده های فیلم، یک سری(tuple) از (MovieID، Title) ایجاد می کنیم .و فیلد ژانر را حذف میکنیم زیرا نیازی به ان نداریم.
حال اطلاعات در داخل RDD جدید بارگزاری میکنیم.

روش Collaborative Filtering
ما در این روش پیش بینی مان برای علاقه کاربر بوسیله جمع اوری اطلاعات مربوط به ترجیها ت یا سلایق از تعداد زیادی از کاربران
اگر کاربر ۱ فیلمی را دوست داشته باشد و کاربر ۲ هم همین فیلم را دوست داشته باشد احتمال اینکه اگر کاربر ۱ فیلم دیگر را دوست داشته باشد و کاربر ۲ هم همین نظر را داشته باشد بیشتر است .


کتابخانه MLib اسپارک برای یادگیری ماشین روش گفته شده را بوسیله Alternating Least Squares پیاده سازی میکند.
کتابخانه MLib دارای پارامتر های زیر است:
۱-numBlocks :تعداد بلوک هایی که برای پردازش موازی استفاده می شود
۲-rank :تعداد عوامل پنهان در مدل
۳-iterations:تعداد iterations برای اجرا
۴-lambda:پارامتر های تنظیم (regularization) را مشخص می کند
۵-implicitPrefs:مشخص می کند ایا از روش بازخورد صریح ALS یا یکی برای داده های بازخورد ضمنی استفاده شود.
۶-alpha:یک پارامتر قابل استفاده برای نوع بازخورد ضمنی ALS است که اعتبار پایه را در مشاهدات ترجیحی کنترل می کند.
انتخاب پارامتر های ALS با استفاده از دیتا ست
برای برست اوردن بهترین پارامتر ها باید باید ابتدا دیتا ست ها را به train، validation, test datasets جدا می کنیم.

For rank 4 the RMSE is 0.963681878574
For rank 8 the RMSE is 0.96250475933
For rank 12 the RMSE is 0.971647563632
The best model was trained with rank
حال ابتدا نگاهی به پیش بینی می اندازیم

predictions.take(3)
```[((32, 4018), 3.280114696166238),
 ((375, 4018), 2.7365714977314086),
 ((674, 4018), 2.510684514310653)]

ما UserID، MovieID و Rating را داریم، همانگونه که در مجموعه داده های رتبهrating ما وجود دارد. در این مورد، عنصر سوم پیش بینی، رتبه بندی برای آن فیلم و کاربر، پیش بینی شده توسط مدل ALS است.
سپس ما با داده های اعتبار سنجی ما (یکی از آنهایی که شاملRating میشود) به آن اضافه می کنیم و نتیجه به شرح زیر است:

rates_and_preds.take(3)
```

[((558, 788), (3.0, 3.0419325487471403)),
((176, 3550), (4.5, 3.3214065001580986)),
((302, 3908), (1.0, 2.4728711204440765))]
```
به این منظور، ما یک تفاوت مجذور(squared difference ) را اعمال می کنیم و ما از عمل mean () برای دریافت MSE و انجام از sqrt استفاده می کنیم
در نهایت ما مدل انتخاب شده را آزمایش می کنیم.
model = ALS.train(trainingRDD, best_rank, seed=seed, iterations=iterations,
lambda
=regularization_parameter)
predictions = model.predictAll(test_for_predict_RDD).map(lambda r: ((r[0], r[1]), r[2]))
rates_and_preds = test_RDD.map(lambda r: ((int(r[0]), int(r[1])), float(r[2]))).join(predictions)
error = math.sqrt(rates_and_preds.map(lambda r: (r[1][0] - r[1][1])2).mean())
print 'For testing data the RMSE is %s' % (error)
For testing data the RMSE is 0.972342381898
درست کردن سیستم پیشنهادی**
هنگام استفاده از فیلتر همگانی( collaborative filtering)، گرفتن پیشنهاد ها برای پیش بینی ورودی های جدید با استفاده از یک مدل قبلا تولید شده ساده نیست. در عوض، ما باید مجددا آموزش مدل، اما شامل تنظیمات جدید کاربر به منظور مقایسه آن با سایر کاربران در مجموعه داده ها پس در هر بار که کاربران جدیدی اضافه شود ما باید دوباره سیستم پیشنهادی خود را تغییر دهیم که باعث هزینه زیادی میشود در اینجا اسپارک به عنوان یک راه حل ارایه میشود که می تواند
به محضی که ما مدل را اماده کردیم خود را با کاربر های جدید وقف دهد هزینه ها را کاهش دهد.
حال فایل فیلم ها را بارگزاری می کنیم.


There are 27303 movies in the complete dataset
حال تابع تعداد امتیاز ها و میانگین ان ها به ازای هر فیلم

اضافه کردن امتیاز کاربر های جدید
با اضافه کردن تعدادی فیلم برای کاربر های جدید ما ان ها را در RDD جدید قرار می دهیم.


حال اطلاعات جدید را به اسپارک اضافه می کنیم
completedata_with_new_ratings_RDD = complete_ratings_data.union(new_user_ratings_RDD)
سپس ALS مدل خود را با دیتا جدید اماده می کنیم.
new_ratings_model = ALS.train(complete_data_with_new_ratings_RDD, best_rank, seed=seed, iterations=iterations, lambda
=regularization_parameter)
گرفتن پیشنهاد های جدید
در ابتدا باید RDD را با فیلم هایی که کاربر هنوز امتیاز نداده بدست بیاوریم.
به انها برای پیش بینی امتیاز فیلم نیاز داریم.
حال می توانیم ۲۵ فیلم با بیشترین امتیاز پیش بینی شده را ببینیم و با RDD پیوند دهیم (join) تا مشخصات فیلم ها بدست اید.

نتایج

مدل

برای وب سرویس نیاز به سه فایل خواهیم داشت.
فایل ها شامل engine ,app.server است.
موتور (engine )
وقتی موتور (engine ) شروع به کار می کند. ما نیاز به تولید als مدل داریم و همچنین نیاز به بارگزاری مدل برای دادن پیشنهاد هستیم.


اضافه کردن رتبه های جدید

ارایه پیشنهاد

۲-app
وب سرویس با فلسک که یکی میکروفریمورک برای پایتون درست خواهد شد.
خروجی توابع با جیسون خواهد بود.


در هنگام فراخوانی create_app شی از recomondation ایجاد می شود.
همچنین url و پارامتر های متد در بین <> قرار میگیرد.
همچنین از متد های رایج post و get هم استفاده شده.

پیاده سازی سرور


فریمورک چری به ما کمک می کند تا اپلیکشن های خود را مانند یک برنامه شی گرا توسعه داد.
تست سرویس
برای اضافه کردن رتبه بندی جدید از دستور زیر استفاده می کنیم.
رتبه بندی جدید را در فایل user_ratings.file قرار می دهیم.
curl --data-binary @user_ratings.file http://<ip>:5432/0/ratings
برای گرفتن پیشنهاد های جدید از دستور زیر استفاده می کنیم.
به جای number از تعداد پیشنهاد های مورد نظر استفاده می کنیم.
http://<ip>:5432/0/ratings/top/number

لینک گیت هاب : https://github.com/smmousavi76/MovieRecommendationAI

۴. کارهای مرتبط

بررسی سایت های برتر جهان در زمینه پیشنهاد فیلم
۱-Jinni
یکی از بهترین سایتهای پیشنهاد فیلم که می تواند بر اساس فیلم های سرچ شده و حتی براساس حس و حالی که در ان هستید به شما فیلم پیشنهاد کند.
۲-Taste Kid
این سایت می تواند به شما بر اساس فیلمی که دوست دارید. ،فیلم های مشابه و کتاب هایی را که ممکن است بر اساس سلیقه شما در انتخاب فیلم به شما پیشنهاد کند.
۳-Nanocrowd
این وبسایت شاید در ظاهر شبیه بقیه سایت ها باشد اما در پشت سرچ شما از الگوریتم خود به نام three-word nanogenre فیلم هایی را به شما پیشنهاد میکند که حتی ممکن از فیلم های پر فروش دنیا هم نباشند.
۴-IMDb
این سایت براساس سرچ کاربر به او فیلم ها را پیشنهاد میدهد و وقتی در صفحه یک فیلم است فیلم های مشابه که کاربر ممکن است ان ها را دوست داشته باشد را پیشنهاد میدهد.
در واقع به بررسی کاربران نمی پردازد بلکه به بررسی نقاط مشترک فیلم ها می پردازد.
۵-. Rotten Tomatoes
این سایت به جای پرسیدن کدام فیلم را دوست دارید از شما می پرسد که کدام بازیگر یا ژانر را دوست دارید و بر اساس ان به شما فیلم مورد علاقه تان را پیشنهاد می کند.

۵. کارهای آینده

۵.۱. پیوندهای مفید

  1. MovieLens dataset

  2. Building a Movie Recommendation System
    3.Recommendation System
    4.Cluster analysis
    5.Recommendation System Algorithms
    6.Spark
    7.Hadoop

</ip></ip>
سعید عادل مهربان

سلام.
خسته نباشید.
اول از همه ازتون می‌خوام که در هر مرحله، خروجی چیزی که نوشتید رو بخونید. الآن متن شما اشکالات زیادی داره که بخش عمده‌اش به ناآشنایی شما با قالب مارک دان برمی‌گرده. من در ارزیابی این اشکالات رو نادیده می‌گیرم، ولی در صورتی که اصلاح نکنید یا در مرحلهٔ بعد تکرار بشه، تأثیرش بیشتر خواهد بود.
در مورد خود محتوا، اینکه یک روش رو توضیح دادید خوبه، ولی اشاره‌ای به مرجع نکردید ضمن اینکه بیش از اندازه عمیق شدید. در بخش کارهای مرتبط شما می‌تونید مروری تاریخی روی روش‌های حل مسئله داشته باشید یا در ابعاد کوچک‌تر مروری کلی روی روش‌های مرتبط. در بخش بعد روش انتخابی رو به صورت عمیق مطرح خواهید کرد.
کارهای آینده، مربوط به آینده است. آیندهٔ نسخهٔ نهایی کار شما. یعنی وقتی به کارهای آینده اشاره می‌کنید، تمام قسمت‌های قبلی تکمیل شدند و احتمالاً ترم هم تمام شده و شما می‌خواهید با تسلط به موضوع و روشی که استفاده کردید بگید بعد از این چه کارهایی می‌شه کرد. تمرکزش هم مربوط به روش‌های حل مسئله است تا ابزار پیاده‌سازی یا تولید محصول. پس قسمت کارهای آینده رو پاک کنید تا وقتش برسه.

سعید عادل مهربان

سلام.
در مرحلهٔ قبل این تذکر رو دادم که متن رو یک بار خودتون بخونید ولی این بار از فاز قبلی هم بدتر شده. چیزی تحت عنوان پیاده‌سازی و ارزیابی هم گزارش نکردید.
متأسّفانه کارتون ضعیف‌تر از قبل شده.

تایید شده

سلام خسته نباشید
پروژه شما از نظر کار علمی و هوش مصنوعی بسیار خوب بود فقط کاش موارد نگارشی و اشتباهات را تصحیح می‍کردید.

تایید شده

اینکه پروژه چیست و در کجا کاربرد دارد به خوبی توضیح داده داده شده است و داده های مورد بررسی و روش های تحلیل انها و پیاده سازی به خوبی تشربح شده است.

تایید شده

به نظر می آید خوب کار کردید ولی متاسفانه برخی تصاویر به درستی بارگذاری نشده اند و انگار در کار کردن با ویرایشگر متن سایت مشکل دارید. بهتر است متن را یک دور دیگر بررسی کنید و بعضی مشکلات ریز آن را حل کنید.

تایید شده

سلام
کار‌های مشابه رو ای‌کاشی بیشتر و با جزئیات بالاتری توضیح می‌دادین و اینکه آزمایشتان را هم بیشتر توضیح می‌دادین که دقیقا از کدام الگوریتم CF استفاده شده و مزایا و معایب آن چیست. برای نتایج هم به نظرم باید معیار دقیقی تعریف می‌کردین که مشخص می‌شد سیستم شما چه‌قدر خوب کار می‌کند. در آخر اینکه از اسپارک استفاده کردین بسیار خوب بود و باعث می‌شه که مقیاس‌پذیری راحت و خوبی رو داشته باشین.

تایید شده

سلام
پروژه خیلی کم توضیح داده شده. الگوریتم‌هایی که استفاده شده به خوبی توضیح داده نشده. پروژه ‌های مشابه دیگر نیز می‌توانست بیشتر و با جزئيات بیشتری توضیح داده شود. از تصویر برای درک بهتر مخاطب استفاده نشده و بیشتر تصویر قسمتی از کد است که زیاد به فهم مخاطب کمکی نمیکند. در قستمت آزمایش‌ها نتایج به خوبی نمایش داده نشده و معیار مناسبی هم تعیین نگردیده است.
خسته نباشید

تایید شده

با سلام
بخش مقدمه خیلی خلاصه بود و انگیزه خواندن ادامه متن را ایجاد نمی کرد
بخش کار های مرتبط نیز خلاصه بود
در بخش آزمایش ها چند نکته قابل ذکر است. یک اینکه در ابتدای متن کد هایی که می خواستید توضیح دهید را می توانستید به صورت کد درج شده و مرتب بیاورید . نوشتن مستقیم کد ها در متن کار صحیحی نبود و باعث ناخوانا بودن می شد. در ادامه اینکه شما در متن باید روش خود را بیان می کردید و به کد های نوشته شده در گیت هاب فقط ارجاع می دادید، اما حتی کد های مربوط به طریقه ساخت سرور را هم در یک متن پژوهشی مرتبط به هوش مصنوعی آورده اید که کار بی ربط و غیر صحیحی بود.
بخش اخر هم به اشتباه کار های مرتبط نام گذاری کردید . همینطور کارهای آینده را نیز توضیح ندادید

تایید شده

سلام،
در کل خوب بود ولی اگر مقدمه و کار های مرتبط را بیشتر توضیح میدادید بهتر بود. کد نیز توضیحات کافی ندارد. استفاده کردن از GIF حرکت جالبی بود اما معمولا تو مقاله از آن استفاده نمی کنند،
خسته نباشید

تایید شده

سلام،
مقدمه و کار های مرتبط خیلی مختصر شده، جا داشت بیشتر شرح دهید اما آزمایش ها خوب بود ولی برای بهبود نتایج چیزی مطرح نشده، توضیح کد نیز بسیار ناقص است.

محسن ایمانی

متن شما کاملا نا مرتب بود و در برخی از موارد بسیار نامفهوم و به نظر می رسد خودتان هم یک بار آن را مطالعه نکرده اید تا ایرادات نحوی و نگارشی متعدد در متن را بر طرف کنید.
همچنین شما باید در این بخش یک ارزیابی کمی از کار خود ارائه می دادی که تنها به نمایش تصاویری از خروجی کد اکتفا نموده اید.

تایید شده

با سلام
به جای استفاده مستقیم اصطلاحات بهتر است که فارسی آن را استفاده نمایید و شکل لاتین کلمات را در پاورقی قرار دهید نه اینکه به طور مستقیم از آن استفاده نمایید .همچنین نکات مرتب نویسی را بهتر بود رعایت کنید . مثلا به جای شماره گذاری تصاویر از "توضیح تصویر" استفاده کرده اید .یا از به کاربردن همچین عباراتی جلوگیری میکردید:
درست کردن سیستم پیشنهادی**
همچنین در توضیح زوش Collaborative filtering به اندازه کافی توضیح نداده اید و خواننده نحوه ی کار الگوریتم را به درستی متوجه نمیشود . همچنین بهتر بود شیوا و روان مطالب را بیان میکردید.مثلا بهتر بود به جای جملات زیر از جملات روان تری استفاده مینمودید:
1- کتابخانه MLib اسپارک برای یادگیری ماشین روش گفته شده را بوسیله Alternating Least Squares پیاده سازی میکند.
2-روش قبلی ساده ، برای سیستم های کوچک بود
3-ما در این روش پیش بینی مان برای علاقه کاربر بوسیله جمع اوری اطلاعات مربوط به ترجیها ت یا سلایق از تعداد زیادی از کاربران
از طرفی شما میبایست در فاز نهایی کار خود را بهبود ببخشید که هیچ تلاشی در این زمینه نکرده اید .
و برای بیان مراجعتان باید در بخش مراجع آنها را بیان میکردید نه در بخش پیوند های مفید و بهتر بود تا از مقالاتی نیز استفاده مینمودید نه اینکه تنها با چندین سایت بسنده کنید .