قرار است تصور حرکتی1 را از سیگنال EEG تفکیک کنیم. با این روش می توانیم از سیگنال حاصله جهت استفاده در به حرکت درآوردن بازوهای مکانیکی استفاده کنیم. برای مثال می‌توان با ایجاد تصور حرکت دست‌ها و تفکیک و انتقال این سیگنال به فردی که از ناحیه دست قطع عضو گردیده یا نرون‌های عصبی آن از کار افتاده، دست مصنوعی و یا دست خود فرد را به حرکت درآوریم.

۱. مقدمه

در این گزارش، روش CSP به همراه سه تعمیم آن یعنی ACSP، ACCSP و SUTCCSP به طور کامل شرح داده می‌شود. الگو های فضایی مشترک روشی محبوب در جداسازی بین کلاس‌ها است. اعمال این روش به داده‌ها پیش از کلاس‌بندی، عملکرد را بالا تر می‌برد. این روش ماهیتی چند کاناله دارد و اغلب برای چند کانال سیگنال به کار می‌رود. یکی از مشکلات این روش عدم دخالت اطلاعات مربوط به فاز سیگنال‌ها در آن است. سیگنال‌های جهان ما اکثراً غیر‌دایره ای هستند. برای مثال در سیگنال EEG ، به دلیل اختلاف توان بین کانال‌ها و همبستگی بین آن‌ها این موضوع رویت می‌شود. سه تعمیمی که مورد بحث قرار می‌گیرند، سعی در اضافه کردن اطلاعات فاز و جدا سازی بیشتر و بهتر بین کلاس‌ها را دارند.

۲. کارهای مرتبط

روش الگو های فضایی مشترک 2 روشی محبوب و پر کاربرد در جدا سازی بین داده‌های دو کلاس، مخصوصاً در تفکیک فعالیت‌های ذهنی در واسط‌های مغز کامپیوتر 3 مبتنی بر داده‌های EEG 4 است. عملکرد بالا در کلاس‌بندی و فیلترهای فضایی مفید به دست آمده از این روش، این الگوریتم را مشهور ساخته است [1] و [2].
این الگوریتم برای اولین بار برای تشخیص غیر طبیعی بودن 5 سیگنال EEG به کار گرفته شد [3] و سپس در جدا سازی بین کلاس‌های مربوط به واسط‌های مغز کامپیوتر و الگو های حرکتی 6 نیز مورد استفاده قرار گرفت [1] و [2]. به دلیل ماهیت چند کاناله بودن، این روش کاربرد فراوانی برای سیگنال های EEG دارد.
روش CSP، با اعمال فیلترهای فضایی به ورودی‌ها، واریانس سیگنال‌ها را در کلاس اول ماکزیمم و به طور همزمان در کلاس دیگر مینیمم می کند و سپس از سیگنال‌های فیلتر شده ویژگی‌های کلاس اول را می‌سازد. این کار به طور عکس نیز اتفاق می افتد. یک سری از فیلترهای فضایی، واریانس سیگنال را در کلاس دوم ماکزیمم و به طور همزمان در کلاس اول مینیمم می‌کنند. سپس با استفاده از این سیگنال‌های فیلتر شده، ویژگی‌های کلاس دوم ایجاد می‌شود. برای به دست آوردن این فیلترهای فضایی، CSP مجموع ماتریس‌های کواریانس دو کلاس را تبدیل به ماتریس همانی 7 می‌کند. این کار با اعمال تبدیلی به نام سفید کنندگی8 انجام می‌شود. با این کار، افزایش واریانس یک کلاس، واریانس کلاس دیگر را کاهش می‌دهد.
تعمیم‌های زیادی از این روش ارائه شده است که هر کدام سعی در بهبود کارایی و یا رفع محدودیتی در الگوریتم اصلی دارند. برای مثال در [5] حالت چند کلاسه‌ی CSP و در [6] انتخاب فیلتر طیفی به طور خود کار9 مطرح شده است. در این گزارش، به غیر از روش CSP ، سه تعمیم آن، یعنی ACSP 10 ، ACCSP 11 و SUTCCSP12 نیز شبیه سازی می شود.
این سه تعمیم، به غیر از اطلاعات دامنه‌ی سیگنال‌ها، اطلاعات فاز سیگنال‌ها را نیز در تفکیک کلاس‌ها دخیل می‌کنند. چرا که بسیاری از سیگنال‌های دنیای واقعی، سیگنال‌های غیر دایره ای 13 هستند. به عبارت دیگر، بین سیگنال‌های دو کانال، همبستگی 14 وجود دارد. روش ACSP فقط اطلاعات فاز سیگنال ها را در الگوریتم CSP دخیل می‌کند. ولی روش‌های ACCSP و SUTCCSP به غیر از این کار، از آمار درجه دوم مربوط به مجموعه اعداد مختلط15 استفاده می کنند. مباحث آماری که به ما می گوید، برای اعداد متغیر های تصادفی مختلف به غیر از کواریانس، به شبه کواریانس 16 هم نیاز داریم. شبه کواریانس داده های غیر دایره ای صفر نیستند! روش ACCSP ماتریسی حاصل از ترکیب کواریانس و شبه کواریانس را برای قطری‌سازی 17 استفاده می‌کند. در حالی که روش SUTCCSP ، به طور همزمان ماتریس های کواریانس و شبه کواریانس را قطری می سازد.

۳. آزمایش‌ها

۴. کارهای آینده

۵. مراجع

[1] Müller-Gerking, Johannes, Gert Pfurtscheller, and Henrik Flyvbjerg. "Designing optimal spatial filters for single-trial EEG classification in a movement task." Clinical neurophysiology 110.5 (1999): 787-798.

[2] Ramoser, Herbert, Johannes Muller-Gerking, and Gert Pfurtscheller. "Optimal spatial filtering of single trial EEG during imagined hand movement." Rehabilitation Engineering, IEEE Transactions on 8.4 (2000): 441-446.

[3] Koles, Zoltan Joseph. "The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG." Electroencephalography and clinical Neurophysiology 79.6 (1991): 440-447.

[4] Ramoser, Herbert, Johannes Muller-Gerking, and Gert Pfurtscheller. "Optimal spatial filtering of single trial EEG during imagined hand movement." Rehabilitation Engineering, IEEE Transactions on 8.4 (2000): 441-446.

[5] Park, Cheolsoo, C. CHEONG TOOK, and D. Mandic. "Augmented Complex Common Spatial Patterns for Classification of Noncircular EEG from Motor Imagery Tasks." (2014): 1-1.

[6] Dornhege, Guido, et al. "Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms." Biomedical Engineering, IEEE Transactions on 51.6 (2004): 993-1002.

[7] Lemm, Steven, et al. "Spatio-spectral filters for improving the classification of single trial EEG." Biomedical Engineering, IEEE Transactions on 52.9 (2005): 1541-1548.

[8] Haykin, Simon. "Adaptive filter theory." 2nd. ed., Prentice-Hall, Englewood Cliffs, NJ (1991).

[9] Huang, Norden E., et al. "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis." Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454.1971 (1998): 903-995.

[10] Yuan, Han, et al. "Cortical imaging of event-related (de) synchronization during online control of brain-computer interface using minimum-norm estimates in frequency domain." Neural Systems and Rehabilitation Engineering, IEEE Transactions on 16.5 (2008): 425-431.

[11] Pfurtscheller, Gert, and Fernando H. Lopes da Silva. "Event-related EEG/MEG synchronization and desynchronization: basic principles." Clinical neurophysiology 110.11 (1999): 1842-1857.

[12] Falzon, O., K. P. Camilleri, and J. Muscat. "Complex-valued spatial filters for task discrimination." Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. IEEE, 2010.

[13] Chebotarev, Alexander M., and Alexander E. Teretenkov. "Singular value decomposition for the Takagi factorization of symmetric matrices." Applied Mathematics and Computation 234 (2014): 380-384.


  1. Motor Imagery

  2. Common Spatial Patterns (CSP)

  3. Brain-Computer Interfaces (BCI)

  4. Electroencephalogram

  5. Abnormality

  6. Identity Matrix

  7. Whitening Transform

  8. Automatic spectral filter selection

  9. Analytic Signal-based CSP

  10. Augmented Complex Common Spatial Patterns

  11. Strong Uncorrelating Transform Augmented Complex Common Spatial Patterns

  12. Non-Circular

  13. Correlation

  14. Complex Statistics

  15. Pseudocovariance

  16. Diagonalization

علیرضا نوریان

حالا که زحمت کشیدید خوبه که یه مقدار واضح‌تر توضیح بدید، بخش‌های زیادی از نوشته‌هاتون رو متوجه نشدم. ادبیات موضوع شما برای کسایی که این درس رو دارن، ناآشناست.